

Desempenho Anticorrosivo de Esquemas de Pintura com Tintas de Base Aquosa – Estudo Realizado

Victor Solymossy
Joaquim Pereira Quintela

Colaboração: Fernando Fragata

Sumário

- Introdução
- Metodologia
- Ensaios
- Resultados
- Conclusões
- Considerações

Introdução

Motivação

• Esquemas de pintura com bom desempenho, amigáveis ao meio ambiente.

Introdução

* Histórico

- Pouca utilização de tintas base d'água na Petrobras.
 - Desempenho insatisfatório
- Falta de especificação técnica para esse tipo de produto.
- Pouco histórico de ensaios de laboratório e de testes de campo

Instituição Parceira na Realização do Estudo: Eletrobras-Cepel

Introdução

❖ Teste de campo na REPLAN – 2007 a 2014

***** Esquemas de referência

	Tintas e espessuras		Espessura total	
R1	N-1277 80 μm	N-2628 120 μm	N-2677 60 μm	260 μm
R2	N-2288 120 μm	N-2628 120 μm	N-2677 60 μm	300 μm
R3	N-2630 150 μm	N-2628 150 μm	N-2677 60 μm	360 μm

Esquemas com tinta de base aquosa

	Tintas e espessuras		Espessura total	
WA1	Zn Epóxi 2 x 80 μm	Epóxi HB 120 μm	Acrílica 2 x 50 μm	380 μm
WA2	Novolac 120 μm	Novolac 120 μm	Acrílica 2 x 50 μm	340 μm
WW1	Epóxi 110 μm	Epóxi 110 μm	PU 60 μm	280 μm

Esquemas com tinta de base aquosa (continuação)

	Tintas e espessuras		Espessura total	
WS1	Epóxi 120 μm	Epóxi 120 μm	PU mono 50 μ	290 μm
WS2	Zn Epóxi 120 μm	Epóxi MIOX 120 μm	PU 60 μm	260 μm
WD1	Epóxi 100 μm	Epóxi 120 μm	PU 60 μm	280 μm

Esquemas com tinta de base aquosa (continuação)

	Tintas e espessuras		Espessura total	
WH1	Acrílica 60 μm	Acrílica 70 μm	Acrílica 70 μ	200 μm
WH2	Epóxi 100 μm	Epóxi 100 μm	PU 100 μm	300 μm
WH3	Zn Epóxi 70 μm	Epóxi 2 x 80 μm	PU 50 μm	250 μm

Esquema híbrido

	Tintas e espessuras		Espessura total	
HSt1	Epóxi LV 150 μm	-	PU 2 x 50 μm	250 μm

- Preparação dos corpos de prova
 - Corpos de prova em aço AISI 1020
 - Grau A de oxidação (ISO 8501-1)
 - Dimensões de 100 x 150 x 6,4 mm
 - Desengraxamento com solventes orgânicos
 - Jateamento ao grau A Sa 3 (ISO 8501-1)
 - > Granalha de aço angular G40 e G50 (3:1)
 - Perfil obtido de 40 a 60 μm
 - Aplicação das tintas: pistola convencional

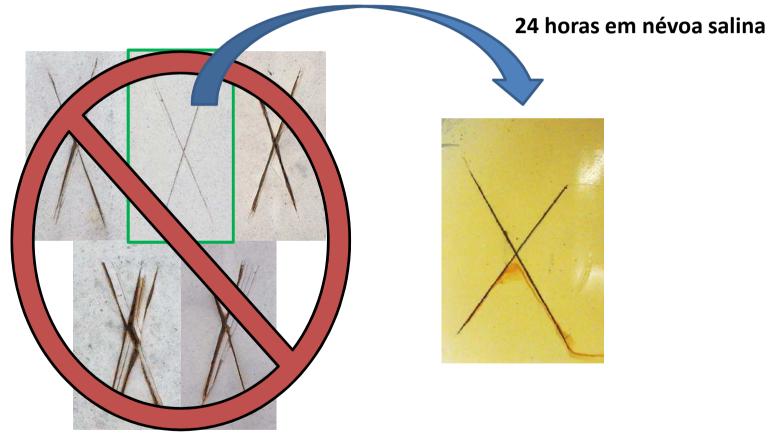
Incisão

- Quando fazer a incisão?
 - > Deve-se saber o que realmente se deseja avaliar
- Qual o formato/orientação adequado?

- Qual a largura/comprimento?
- Como fazer a incisão?
 - > Com cuidado
- Qual a melhor ferramenta?

Incisão

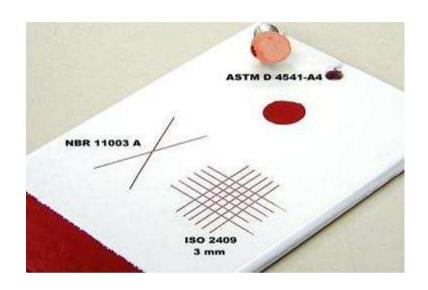
Ferramentas



Incisão

Único corte, podendo ser feito em vários movimentos, até o substrato

- Aderência inicial
- Imersão em água destilada
- Imersão em água salgada (NaCl 3,5%)
- Ensaio cíclico de corrosão I
- Ensaio cíclico de corrosão II
- Ensaio em câmara de névoa salina
- Ensaios eletroquímicos
- Exposição à radiação UV
- Exposição ao intemperismo natural

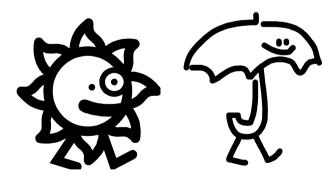


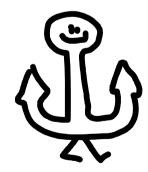
* Aderência inicial

ABNT NBR 11003 (método A) ISO 2409 (3 mm) ASTM D 4541 – A4

Imersão em água destilada e água salgada

Temperatura de 40 °C Imersão de 90% do corpo de prova Inspeções semanais





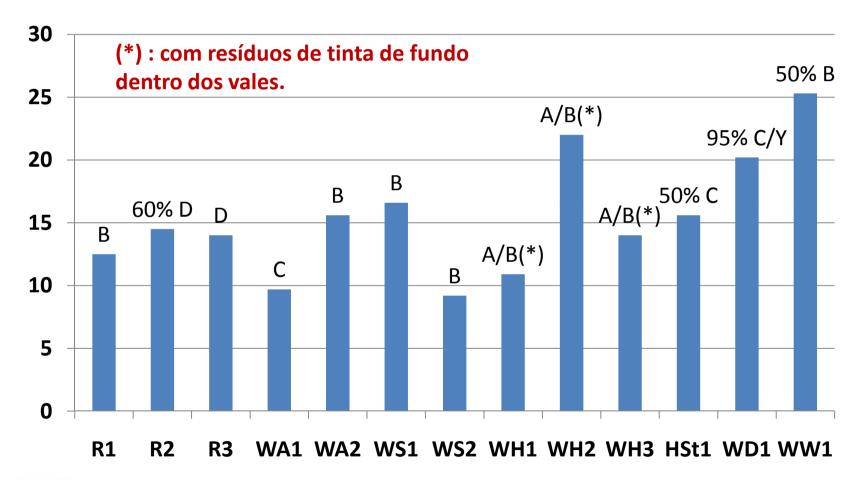
Ensaio cíclico de corrosão I

- 3 dias de exposição à radiação UV e condensação de umidade (ASTM G 154)
- 1 dia a baixa temperatura (-10 °C)
- 3 dias de exposição em câmara de névoa salina (ASTM B 117)

Exposição natural

- Duração mínima 19 meses (RPBC) e 20 meses (Cepel)
- Realizado no CEPEL (Ilha do Fundão, RJ) e na RPBC (Cubatão, SP)

Parâmetros de avaliação de desempenho


- > Empolamento, conforme ISO 4628-2
- Corrosão, conforme ISO 4628-3
- > Fendimento, conforme ISO 4628-4
- > Avanço de corrosão
- Condições do substrato, sob o revestimento, antes e após a realização dos ensaios de corrosão
- Aderência, conforme ABNT NBR 11003, ISO 2409 e ASTM D 4541
- > Brilho, conforme ASTM D 523
- > Empoamento, conforme ISO 4628-6
- Documentação fotográfica

* Aderência inicial

Imersão em água destilada - Referências

Esquema	Inspeção Visual
R1	4200 h (175 dias): não foram observadas
R2	alterações nos revestimentos com relação à presença de corrosão, fendimento
R3	empolamento.

❖ Imersão em água destilada – Base aquosa

Esquema	Inspeção Visual
WA1	24 h (1 dia): formação de bolhas 5 (S2/3) 48 h (2 dias): formação de bolhas 4 (S3/4)
WA2	24 h (1 dia): formação de bolhas 3 (S2/3) 48 h (2 dias): formação de bolhas 4 (S4)
WW1	384 h (16 dias): formação de bolhas muito pequenas na parte inferior de um corpo-de-prova, enquanto que os demais não apresentaram alterações. 720 h (30 dias): formação de bolhas 3/4 (S2)

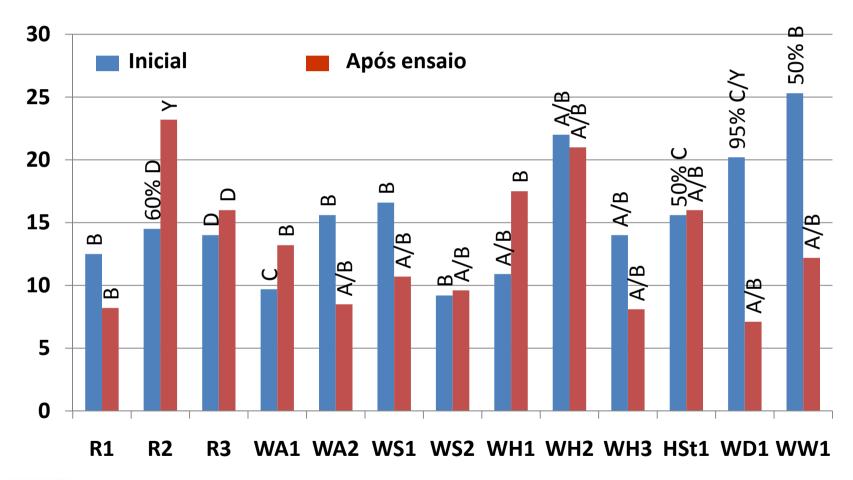
❖ Imersão em água destilada – Base aquosa (cont.)

Esquema	Inspeção Visual		
WS1	4200 h (175 dias): não foram observadas alterações no revestimento com relação à presença de corrosão, fendimento e empolamento (!!!!!!)		
WS2	1344 h (16 dias): formação de uma bolha (S4/5) próxima à linha d'água e também uma bolha no verso do corpo-de-prova. 2448 h (102 dias): Presença de 3 bolhas tamanho (S5) e 1 bolha tamanho (S3/4) !!!!!!		
WD1	384 h (16 dias): formação de bolhas 2 (S5). 504 h (21 dias): formação de bolhas 2/3 (S5)		

❖ Imersão em água destilada – Esquema híbrido

Esquema	Inspeção Visual
HSt1	4200 h (175 dias): não foram observadas alterações no revestimento com relação à presença de corrosão, fendimento e empolamento. Notou-se apenas leve amarelecimento da película.

❖ Imersão em água destilada – Registro fotográfico



Imersão em água destilada - Aderência

Imersão em água salgada - Referências

Esquema	Inspeção Visual
R1	4200 h (175 dias): não foram observadas
R2	alterações nos revestimentos com relação à presença de corrosão, fendimento e
R3	empolamento.

❖ Imersão em água salgada – Base aquosa

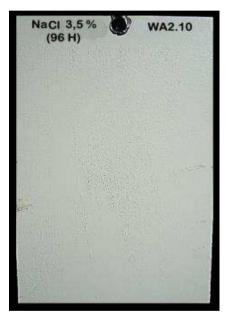
Esquema	Inspeção Visual
WA1	48 h (2 dias): formação de bolhas 4 (S2) 96 h (4 dias): formação de bolhas 5 (S3)
WA2	72 h (3 dias): formação de bolhas 5 (S1) 96 h (4 dias): formação de bolhas 5 (S2) e 3 (S3)
WW1	4200 h (175 dias): não foram observadas alterações no revestimento com relação à presença de corrosão, fendimento e empolamento

❖ Imersão em água salgada – Base aquosa (cont.)

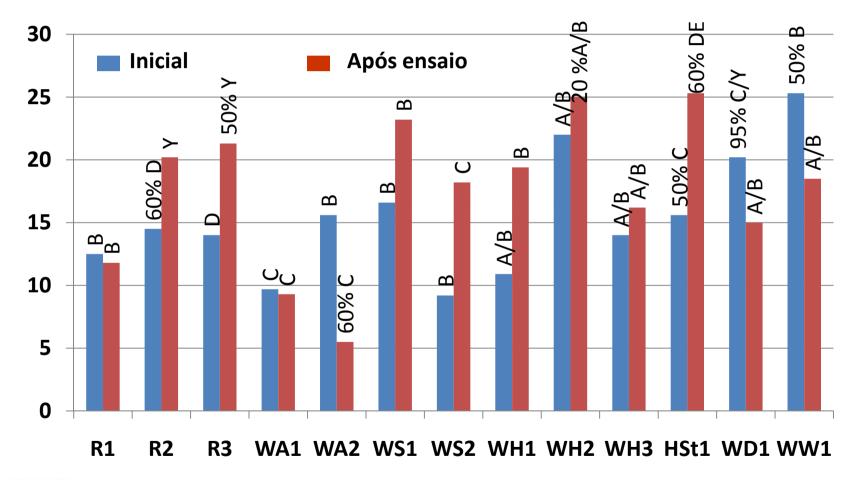
Esquema	Inspeção Visual
<u>WS1</u>	4200 h (175 dias): não foram observadas alterações no revestimento com relação à presença de corrosão,
<u>WS2</u>	fendimento e empolamento (!!!)
WD1	4200 h (175 dias): não foram observadas alterações no revestimento com relação à presença de corrosão e fendimento. Um dos corpos-de-prova constatou-se a formação de bolhas 2 S(2) próximo à interface ar/solução.

❖ Imersão em água salgada – Esquema híbrido

Esquema	Inspeção Visual
	1584 h (66 dias): formação de 1 bolha tamanho (S2) próximo à linha d'água e 1 bolha (S2) na superfície de um corpo-de-prova
HSt1	4200 h (175 dias): Em dois corpos-de-prova não foram observadas alterações no revestimento com relação à presença de corrosão, fendimento e empolamento. Em outro corpo-de-prova observou-se a presença de bolhas 2(S5) na face considerada.



❖ Imersão em água salgada – Registro fotográfico



Imersão em água salgada - Aderência

Ensaio Cíclico I – Referências

Esquema	Empolamento		Corrosão		Fendimento	
	2000 h	4300 h	2000 h	4300 h	2000 h	4300 h
R1	0	0	Ri O	Ri O	0	0
R2	0	0	Ri O	Ri O	0	0
R3	0	0	Ri O	Ri O	0	0

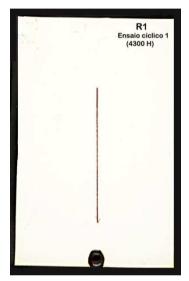
Ensaio Cíclico I – Base aquosa

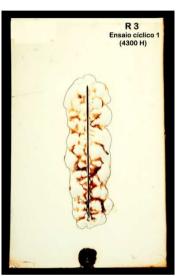
Esquema	Empolamento		Corrosão		Fendimento	
	2000 h	4300 h	2000 h	4300 h	2000 h	4300 h
WA1	0	0	Ri O	Ri O	0	0
WA2	0	0	Ri O	Ri O	0	0
WW1	0	0	Ri O	Ri O	0	0

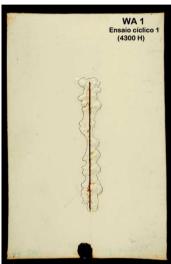
❖ Ensaio Cíclico I – Base aquosa (cont.)

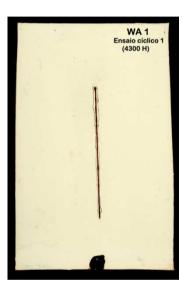
Esquema	Empolamento		Corrosão		Fendimento	
	2000 h	4300 h	2000 h	4300 h	2000 h	4300 h
WS1	0	0	Ri O	Ri O	0	0
WS2	0	0	Ri O	Ri O	0	0
WD1	0	0	Ri O	Ri O	0	0

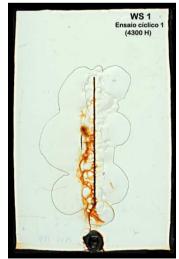
Ensaio Cíclico I – Esquema Híbrido

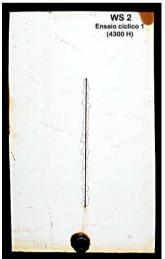

Esquema	Empolamento		Corrosão		Fendimento	
	2000 h	4300 h	2000 h	4300 h	2000 h	4300 h
HSt1	0	0	Ri 0	Ri 0	0	0

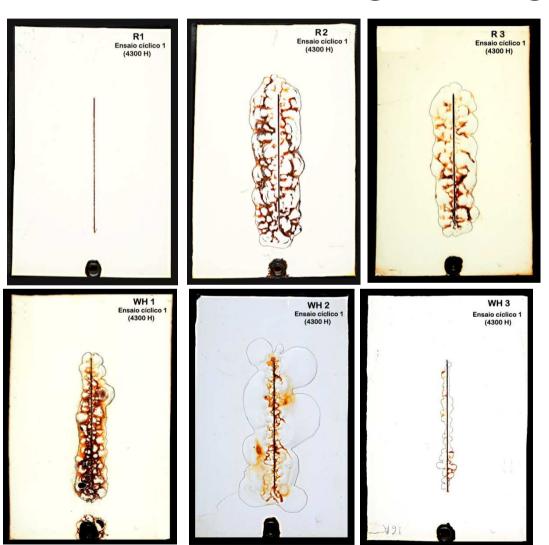


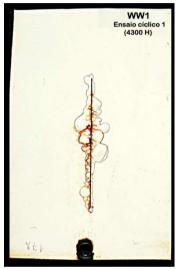


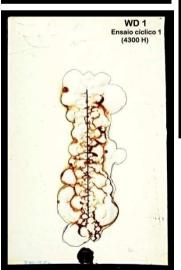

Ensaio Cíclico I – Registro fotográfico após 4.300 h





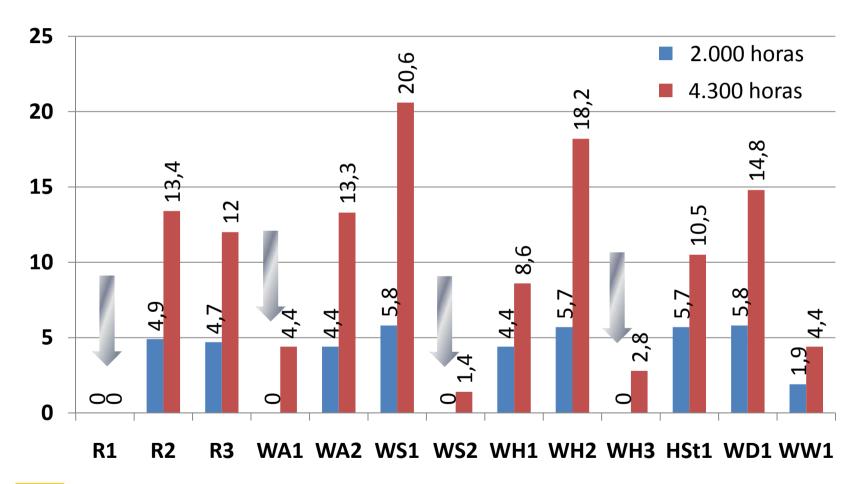





PETROBRAS

Resultados

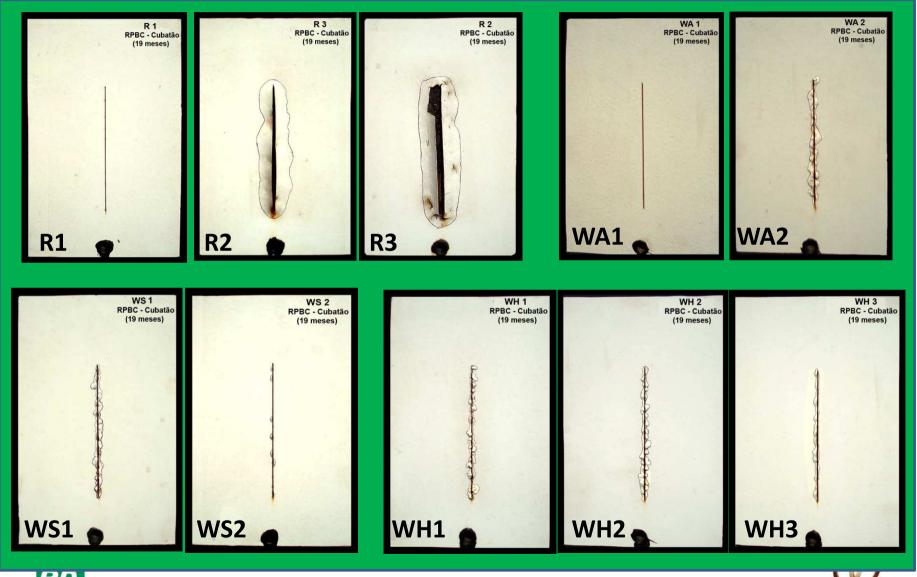
Ensaio Cíclico I – Registro fotográfico após 4.300 h



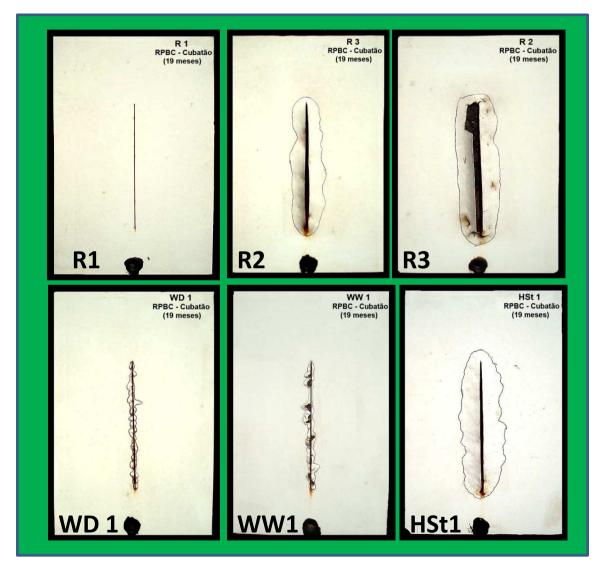
❖ Ensaio cíclico I – Avanço da corrosão

Exposição em Atmosfera Industrial (RPBC) Durante 19 Meses.

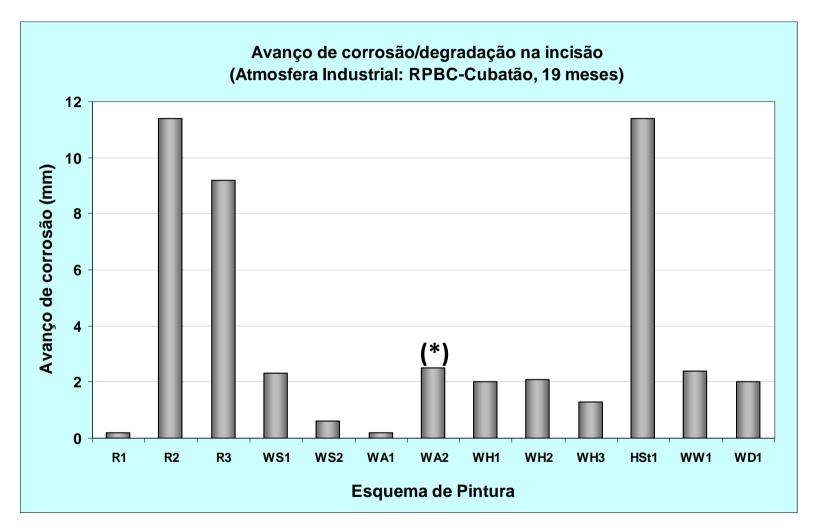
Após 19 meses de exposição, as únicas alterações ocorreram na região da incisão. Nos corpos-de-prova sem incisão não se observaram falhas de corrosão, empolamento e fendimento.



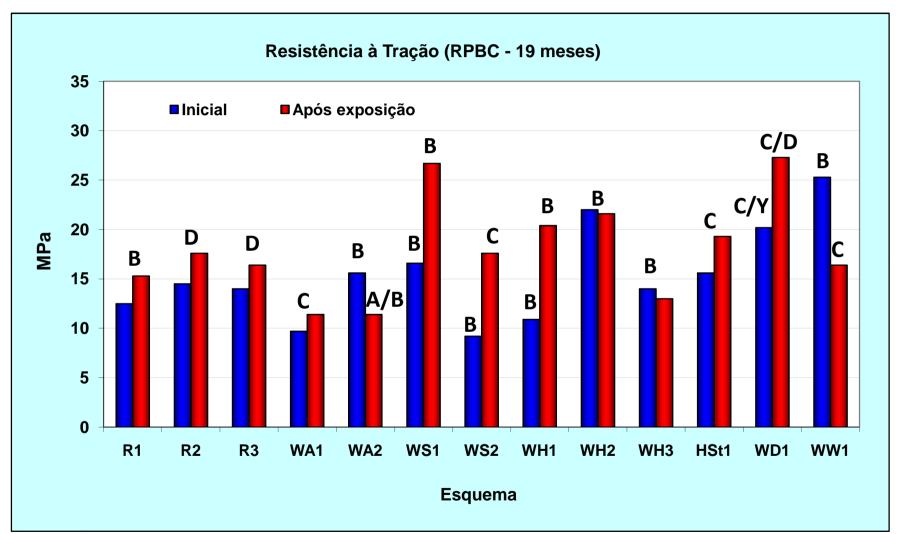
Exposição em Atmosfera Industrial (RPBC) Durante 19 Meses.



Exposição em Atmosfera Industrial (RPBC) Durante 19 Meses.



Exposição em Atmosfera Industrial (RPBC) Durante 19 Meses.

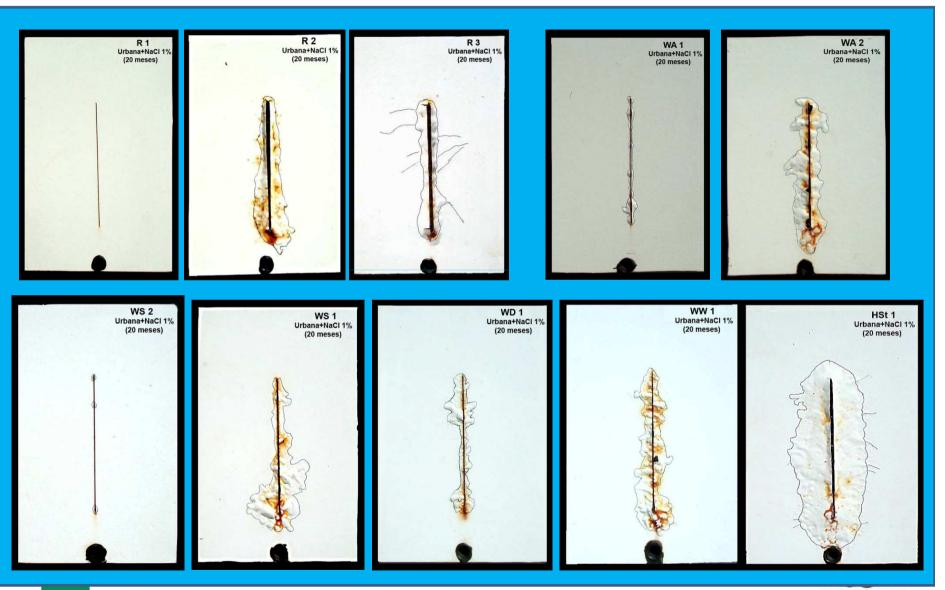


(*) Sob o revestimento, o substrato apresentava-se com muitos pontos de corrosão.

Resistência à Tração (RPBC- 19 meses)

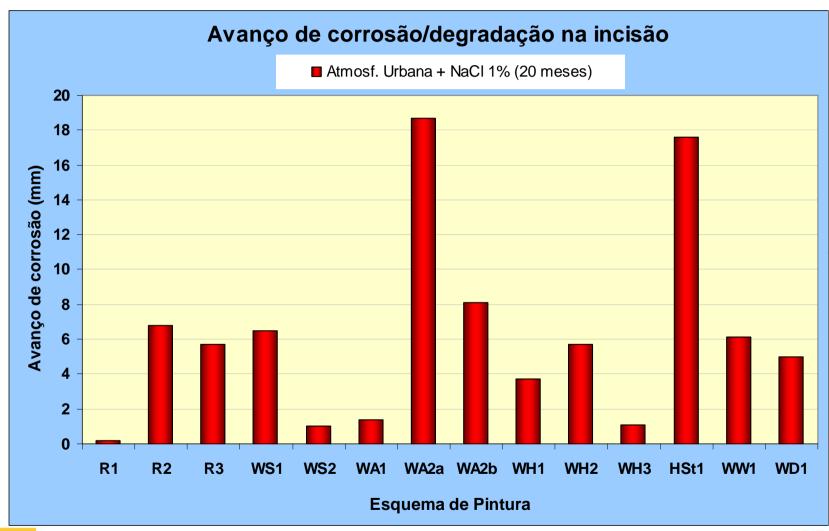
Atmosfera Urbana (Cepel) + NaCl 1 % duas vezes p/ semana

Após 20 meses de exposição, as únicas alterações ocorreram na região da incisão. Nos corpos-de-prova sem incisão não se observaram falhas de corrosão, empolamento e fendimento.

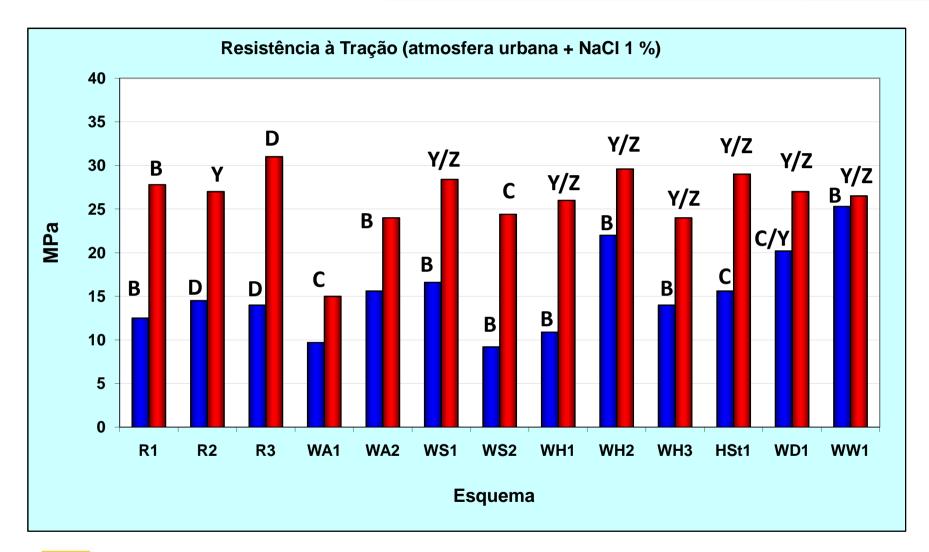


Atmosfera Urbana (Cepel) + NaCl 1 % duas vezes p/ semana

Atmosfera Urbana (Cepel) + NaCl 1 % duas vezes p/ semana



Atmosfera Urbana (Cepel) + NaCl 1 % duas vezes p/ semana



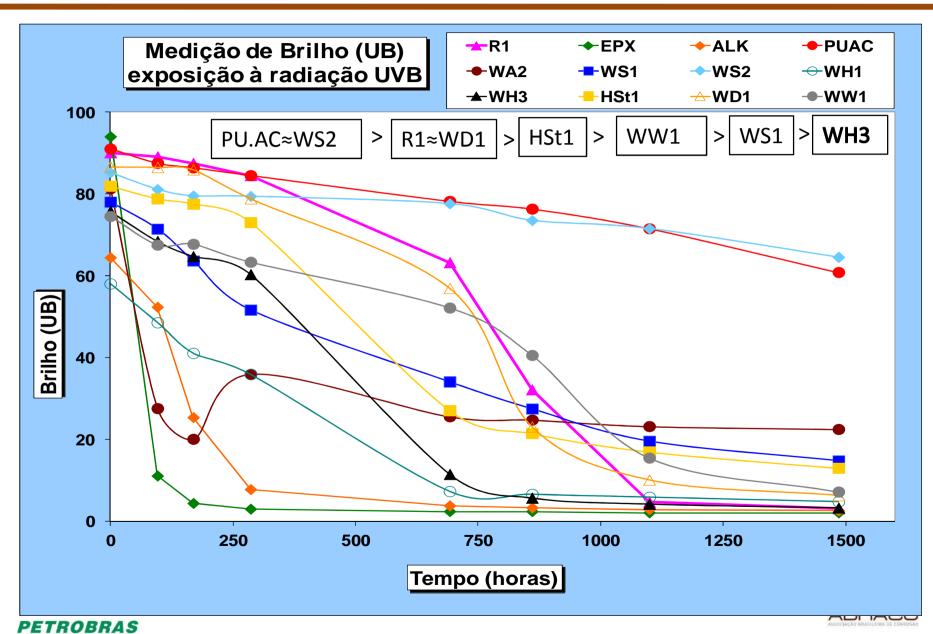
Atmosfera Urbana (Cepel) + NaCl 1 % duas vezes p/ semana

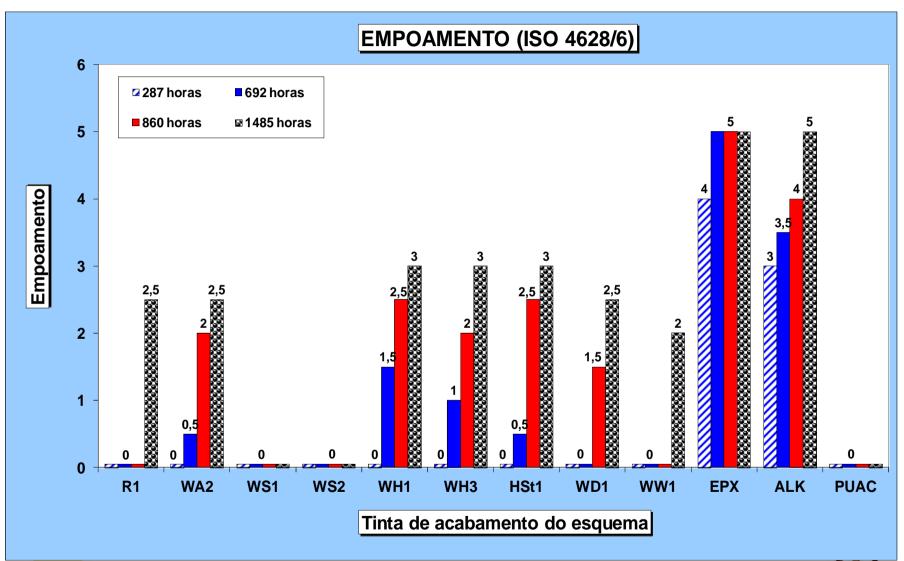
- * Resistência à radiação Ultravioleta
 - Lâmpada UVB-313
 - 8 h de exposição à radiação de UVB
 - 4 h de condensação de umidade e temperatura

* Revisando as tintas de acabamento

Esquema	Resina		
<u>R1</u>	<u>N-2677</u>		
WA2	Acrílica		
WS1	PU monocomp.		
WS2	PU bicomp.		
WH1	Acrílica		
WH3	PU bicomp.		

Esquema	Resina		
HSt1	PU Bicomp.		
WD1	PU Bicomp.		
WW1	PU Bicomp.		
<u>EPX</u>	<u>Epóxi</u>		
<u>ALK</u>	<u>Alquídica</u>		
<u>PUAC</u>	PU Bicomp. *		


^{*} Com aditivos foto-estabilizantes



Brilho X Tempo de Exposição

Empoamento

Considerações Finais e Conclusões

- ❖ No ensaio de imersão em água destilada, os esquemas de pintura de base aquosa, de uma forma geral, apresentaram desempenho inferior aos esquemas de referência (R1, R2 e R3). Porém, este ensaio não é decisivo para a seleção de tintas ou de esquemas de pintura para proteção contra à corrosão atmosférica. Exemplo disso é que as tintas alquídcas não possuem resistência a este ensaio e sempre foram utilizadas com sucesso no campo da proteção anticorrosiva. Tratase de um ensaio para caracterizar as propriedades de resistência à imersão em água destilada.
- ❖ Para proteção contra à corrosão atmosférica, vários esquemas de pintura com tintas de base aquosa proporcionaram desempenhos parecidos com os esquemas de referência como, por exemplo, os esquemas WS1, WS2, WH1, WH2, WH3.
- ❖ Independente da tecnologia das tintas, os esquemas de pintura com tintas de fundo ricas em zinco foram os que apresentaram em todos os ensaios os melhores resultados de desempenho, fato que já era esperado. Apesar das propriedades de proteção galvânica das tintas ricas em zinco de base aquosa (esquemas WS2 e WH3), o desempenho, do ponto de vista eletroquímico é inferior ao da N 1277, apesar dos dois esquemas mencionados terem apresentado bom desempenho.

Considerações Finais e Conclusões

- ❖ O desempenho do esquema acrílico/acrílico foi bastante satisfatório em todos os ensiaos e constitui-se numa alternativa técnica e econômica viável para atmosferas com categoria de corrosividade C1 a C3 (ISO 9223), tal como recomendado pelo fabricante das tintas.
- ❖ Para atmosferas de elevada agressividade (C5 ou > C5), a recomendação é que se utilizem esquemas de pintura com tintas de fundo pigmentadas com zinco.
- ❖ Com relação às tintas ricas em zinco de base aquosa, é recomendável que os fabricantes procurem melhorar o desempenho das mesmas para que se aproxime da N 1277.
- ❖ Quanto a resistência tintas de acabamento poliuretano de base aquosa à radiação ultravioleta, a do esquema WS2 foi a que apresentou melhor desempenho, inclusive superior ao da N 2677. Contudo, é importante destacar que esta propriedade depende muito do sistema de resinas utilizado e da presença e tipos de agentes fotoestabilizadores presentes na composição das tintas. É importante destacar que as tintas PU de alguns fabricantes foram muito difíceis de aplicação e devem ser modificadas. Além disso, mostraram uma tendência grande à formação de bolhas do tipo fervura por ocasião da aplicação.

Considerações Finais e Conclusões

- ❖ Os ensaios realizados, tanto em campo quanto em laboratório, apresentaram boa correlação qualitativa e os resultados obtidos podem ser utilizados para a elaboração de normas técnicas ou no desenvolvimento de novas tintas anticorrosivas de base aquosa.
- ❖ É importante que a avaliação de desempenho seja feita por profissionais que entendam de tecnologias de tintas, especialmente no que diz respeito às suas propriedades fisico-químicas.

Considerações

Custo

Sistemas de base aquosa ainda são mais caros

Desempenho

- Avançou muito nos últimos anos
- Especialmente em imersão, ainda precisa melhorar

Cultura

Sistemas base solvente (e sem solventes) já estão incorporados na cultura

❖ Alternativa

Utilizar esquemas híbridos, com acabamento base aquosa

Obrigado

